<cite id="yyiou"><tbody id="yyiou"></tbody></cite>
<cite id="yyiou"><samp id="yyiou"></samp></cite>
  • <s id="yyiou"></s><bdo id="yyiou"><optgroup id="yyiou"></optgroup></bdo>
  • <cite id="yyiou"><tbody id="yyiou"></tbody></cite>

    首頁(yè) > 期刊 > 自然科學(xué)與工程技術(shù) > 基礎(chǔ)科學(xué) > 數(shù)學(xué) > 數(shù)學(xué)學(xué)報(bào) > Weak Solutions to the Cahn-Hilliard Equation with Degenerate Diffusion Mobility in R^N 【正文】

    Weak Solutions to the Cahn-Hilliard Equation with Degenerate Diffusion Mobility in R^N

    Ji; Hui; WU; Lei; LU College; of; Mathematics; Physics; and; Statistics; Shanghai; University; of; Engineering; Science; Shanghai; 201620; P.R.China; College; of; Sciences; Shanghai; University; Shanghai; 200444; P.R.China; College; of; Mechanical; Engineering; Beijing; University; of; Technology; Beijing; 100124; P.R.China
    • degenerate
    • viscous
    • convergence

    摘要:This paper is concerned with a popular form of Cahn-Hilliard equation which plays an important role in understanding the evolution of phase separation. We get the existence and regularity of a weak solution to nonlinear parabolic, fourth order Cahn-Hilliard equation with degenerate mobility M(u)= u^m(1-u)^m which is allowed to vanish at 0 and 1. The existence and regularity of weak solutions to the degenerate Cahn-Hilliard equation are obtained by getting the limits of Cahn-Hilliard equation with non-degenerate mobility. We explore the initial value problem with compact support and obtain the local non-negative result. Further, the above derivation process is also suitable for the viscous Cahn–Hilliard equation with degenerate mobility.

    注:因版權(quán)方要求,不能公開(kāi)全文,如需全文,請(qǐng)咨詢雜志社

    投稿咨詢 免費(fèi)咨詢 雜志訂閱

    我們提供的服務(wù)

    服務(wù)流程: 確定期刊 支付定金 完成服務(wù) 支付尾款 在線咨詢
    主站蜘蛛池模板: 克山县| 罗江县| 昭觉县| 自贡市| 宿迁市| 合江县| 石林| 如东县| 根河市| 青河县| 中牟县| 高安市| 富裕县| 屯门区| 翁源县| 城步| 信宜市| 且末县| 南京市| 普陀区| 万荣县| 滁州市| 平利县| 莎车县| 石景山区| 东宁县| 元朗区| 长治县| 万源市| 辽中县| 民勤县| 鹿邑县| 灌云县| 大理市| 广西| 孟村| 同心县| 博湖县| 高陵县| 宁乡县| 秭归县|